domenica, Dicembre 22, 2024

Microbiota urinario: il regolatore della formazione dei calcoli renali e possibilmente di altre condizioni

I ricercatori della Cleveland Clinic hanno trovato la prova...

Serotonina “bilocata”: gli effetti degli antidepressivi partono dall’intestino ancora prima che dal cervello

Un nuovo studio sugli animali suggerisce che indirizzare i...

Pneumonia: discovered how it grows back from residual flu

The situation is relatively common, especially in winter. You come down with the flu, which lasts longer than usual. A few days later, you discover you have pneumonia. The relationship between influenza and pneumonia has long been observed by health workers. Its genetic and cellular mechanisms have now been investigated in depth by scientists in a study involving volunteers and conducted in the United Kingdom. Published in the journal Nature Immunology, the paper describes for the first time a cellular mechanism that controls the proliferation of pneumococci – the Streptococcus pneumoniae bacteria that cause pneumonia – and their movement from the nose to the lungs. The study was performed by scientists at the Center for Research on Inflammatory Diseases – CRID, funded by São Paulo Research (FAPESP), and the Liverpool School of Tropical Medicine (LSTM) in the UK. Based on analysis of the cellular, genetic and immune response mechanisms, the team was able to prove that most flu-related deaths are due to post-flu pneumonia rather than to influenza virus itself. They also reports that in humans, the inflammation caused by the influenza virus impairs the innate immune control of this bacterium.

The main reason, according to the results of the study, is that influenza virus silences the organism’s innate immune response, in particular inhibiting the action of macrophages – the main type of leukocyte or white blood cell responsible for expelling foreign bodies such as viruses and bacteria. To conduct the study, the researchers recruited volunteers to be inoculated with attenuated influenza virus and pneumococcus. This procedure is permitted in the UK. No volunteers suffered from pneumonia during the study. Researchers on the Brazilian side analyzed and interpreted genetic and cellular data using CEMiTool bioinformatics software developed at the University of São Paulo’s Pharmaceutical Science School (FCF-USP) with FAPESP’s support under the aegis of its Young Investigators grant program. Live attenuated influenza viruses were obtained from the flu vaccines (Fluenz/Flumist) administered every winter in the UK. Three days after receiving the flu virus, the volunteers received pneumococcus via nasal spray. Blood samples, nasal swabs and nasal cells from the volunteers were analyzed throughout the study, which lasted an entire winter.

The findings showed that the number of bacteria in the nose increased significantly because of the influenza virus. The bacteria multiply in the nose when the influenza virus impairs the immune response by inhibiting monocyte antibacterial activity. Daniela Ferreira, a professor at LSTM and main investigator, explained thoroughly: “In order for pneumonia to develop, the bacterium must be in the lungs. This same bacterium can live in the nose for a long time without causing symptoms, especially in healthy adults. For some reason, however, especially in more vulnerable patients, the bacterium travels from the nose to the lungs. Our study focused precisely on the mechanisms that clear the bacteria from the nose and prevent it from traveling to the lungs, and on how influenza virus alters this process. Another important point is that excessive multiplication of pneumococcus heightens the patient’s predisposition to transmit it to other people. There are two problems: an increase in individual susceptibility to pneumonia, and an increase in transmission of pneumococcus in the general population. Therefore, we analyzed the genes and mechanisms involved in the bacterium’s journey to the lungs. We also identified biological markers that are more expressed in an individual with the virus and uncontrolled bacterial infection.

The mechanisms of the immune response to colonization by pneumococcus have been thoroughly studied in mice but remain poorly understood in humans. Using for the first time a human experimental challenge model with the attenuated flu virus and pneumococcus, the researchers discovered that in humans, unlike mice, nasal bacterial infection leads quickly to the activation of neutrophils, another type of lymphocyte always present in the human nose, and to the recruitment of monocytes, which clear the nostrils of bacteria by rupturing their vesicles (lysis). Neutrophil recruitment results in control of the bacteria in mice, instead of monocyte recruitment. Another finding was that the live attenuated influenza vaccine can be used to control pneumonia, which is a major global health problem and kills more children under five than any other disease. It is also particularly dangerous to the elderly and people with chronic lung disease, immunosuppression and viral coinfection. “The most important point about this entire process is that people need to be immune to flu. The flu vaccine also proved beneficial to avoiding pneumonia,” Ferreira said.

The researchers are now analyzing the converse situation when infection by the bacteria occurs first and is followed by influenza virus infection.

  • Edited by Dr. Gianfrancesco Cormaci, PhD, specialist in Clinical Biochemistry.

Scientific references

Jochems SP et al., Ferreira DM. Nat Immunol. 2018 Dec; 19:1299-1308. 

Russo PS et al., Nakaya HI. BMC Bioinformatics 2018 Feb; 19(1):56. 

Ishiguro T, Kagiyama et al. Yale J Biol Med. 2017 Jun; 90(2):165-181. 

Asai N et al.,  Yamagishi Y. BMC Infect Dis. 2017 Aug 15; 17(1):572.

Latest

Newsletter

Don't miss

Gli effetti neurotossici del glifosato che sembrano simulare l’Alzheimer tramite la neuroinfiammazione

Il glifosato è l'erbicida più ampiamente utilizzato al mondo,...

Systemic mastocytosis under siege: release the new weapon first, then “do the math” to estimate efficacy

Systemic mastocytosis (SIM) is characterized by an abnormal accumulation...
Dott. Gianfrancesco Cormaci
Dott. Gianfrancesco Cormaci
Laurea in Medicina e Chirurgia nel 1998; specialista in Biochimica Clinica dal 2002; dottorato in Neurobiologia nel 2006; Ex-ricercatore, ha trascorso 5 anni negli USA (2004-2008) alle dipendenze dell' NIH/NIDA e poi della Johns Hopkins University. Guardia medica presso la casa di Cura Sant'Agata a Catania. Medico penitenziario presso CC.SR. Cavadonna (SR) Si occupa di Medicina Preventiva personalizzata e intolleranze alimentari. Detentore di un brevetto per la fabbricazione di sfarinati gluten-free a partire da regolare farina di grano. Responsabile della sezione R&D della CoFood s.r.l. per la ricerca e sviluppo di nuovi prodotti alimentari, inclusi quelli a fini medici speciali.

Il vaccino per l’HIV potrebbe diventare realtà: merito dei progressi tecnologici e del condividere conoscenze

Una sfida importante nello sviluppo di un vaccino per l’HIV è che il virus muta velocemente, molto velocemente. Anche se inizialmente una persona viene...

Le proteine Aster: le nuove attrici del traffico cellulare del colesterolo si svelano per arrivare a farmaci specifici

Il colesterolo proveniente dal cibo viene assorbito dalle cellule che rivestono la mucosa intestinale – gli enterociti – dove viene trasformato in goccioline che...

Scompenso cardiaco: si prova che il microbiota condiziona la progressione

Quando il cuore diventa compromesso a tal punto che non può più pompare abbastanza sangue nel corpo, sopravviene l'insufficienza cardiaca. Attualmente, quasi 6 milioni...

Questo si chiuderà in 20 secondi