mercoledƬ, Dicembre 25, 2024

Malattia di Crohn e metabolismo batterico: le vie delle zolfo suggeriscono sintomi e interventi di ordine alimentare

Anche nei casi di malattia infiammatoria intestinale quiescente (cioĆØ...

Exhaustion TEXture: metabolism and epigenetic meet on the core for CART-driven opportunities

PersistentĀ antigenĀ stimulation, as observed in cancer and chronic infections, leads...

Neurosteroids on fire: the brain does not take the Toll 4 granted

Neuroactive steroids, which are naturally occurring steroids in the brain and elsewhere in the body, have many functions critical for life and health. These steroids decline with aging and are deficient in many neuropsychiatric conditions, such as depression. Inflammatory cell signaling in the brain is heightened in many neuropsychiatric conditions, including alcohol use disorder, depression, and post-traumatic stress. It is also seen in sepsis, epilepsy, multiple sclerosis, and Alzheimer’s disease. For the first time, scientists discovered how neuroactive steroids naturally found in the brain and bloodstream inhibit the activity of a specific kind of protein called Toll-like receptors (TLR4), which have been known to play a role in inflammation in many organs, including the brain. This UNC School of Medicine-University of Maryland collaboration, shows how the neurosteroid allopregnanolone prevents the activation of pro-inflammatory proteins important for gene regulation, as well as the creation of cytokines, which are known to be involved in many different inflammatory conditions. The researchers have proposed that treatment with these compounds may prevent uncontrolled TLR4 signaling in conditions where this signaling contributes to disease.

Recent studies showed that the neurosteroid compounds pregnenolone and allopregnanolone have therapeutic effects in depression, schizophrenia and PTSD. But until now, scientists didn’t understand how. The UNC-Maryland study suggests that inhibition of inflammatory signaling may contribute to these effects, and inhibition of TLR4 signaling may be a new target for these conditions. In collaboration with Dr. Laure Aurelian, PhD at the University of Maryland, Dr. Morrow and colleagues found that allopregnanolone inhibits TLR4 activation in macrophages, which are found in white blood cells and part of the immune system, including in the brain. The researchers found that allopregnanolone prevents TLR4 binding to MD2 proteins. These are scaffold proteins that launch a cascade signaling upon TLR4 recruitment. They then activate transcription factors that regulate the genes responsible for inflammatory responses in cells and tissues. Allopregnanolone also tamps down chemokines and cytokines, such as NFkB, HMGB1, MCP-1 and TNF-a, all of which are part of the immune system and involved in many different inflammatory diseases.

In a previous study of the team, pregnenolone was found to promotes ubiquitination and degradation of TLR2 and the TLR2/4 adaptor protein TIRAP in macrophages and microglial cells. Pregnenolone and its metabolites suppressed the secretion of cytokines TNF-Ī± and IL-6 mediated through TLR-2 and -4 signaling. Pregnenolone was reported to induce the activation of cytoplasmic linker protein-170 (CLP-170); this protein was recently shown to promote targeted degradation of TIRAP. However, the molecular mechanism behind the anti-inflammatory and neuroprotective functions of allopregnenolone remains largely unknown. Glucocorticoids exert their immunosuppressive effect by binding to the glucocorticoid receptor. However, pregnenolone was believed to use a glucocorticoid receptor-independent mechanism, since its antagonist mifepristone did not affect the immunosuppressive property of allopregnenolone. Now that scientists have identified this inhibitory mechanism, they can create new compounds to fill this particular role of neurosteroids without unwanted side effects. In addition, researchers can now plan clinical studies to determine the best doses, formulations, and modes of administration.

Senior author A. Leslie Morrow, PhD, the John Andrews Distinguished Professor in the Departments of Psychiatry and Pharmacology at the UNC School of Medicine, precised some concepts: “Pregnenolone’s effects in the brain were less pronounced; but inhibition of peripheral inflammation protects the brain as well because systemic inflammation affects organs throughout the body indirectly. It has been very difficult to treat brain disease that involves inflammation, but allopregnanolone’s inhibition of TLR4 signaling activation in macrophages and the brain provides hope that we can develop better therapies to help millions of people suffering with these conditionsā€.

  • Edited by Dr. Gianfrancesco Cormaci, PhD, specialist in Clinical Biochemistry.

Scientific references

Balan I et al., Morrow AL. Sci Rep. 2019; 9(1):1220.

Zhang Y et al. Clin Hemorheol Microcirc. 2019 Jan 23.

Murugan S, Jakka P et al. J Biol Chem. 2019 Jan 15.

Karababa A et al. Neurochem Res. 2017; 42(3):737-49.Ā 

Latest

Malattia di Crohn e metabolismo batterico: le vie delle zolfo suggeriscono sintomi e interventi di ordine alimentare

Anche nei casi di malattia infiammatoria intestinale quiescente (cioĆØ...

Exhaustion TEXture: metabolism and epigenetic meet on the core for CART-driven opportunities

PersistentĀ antigenĀ stimulation, as observed in cancer and chronic infections, leads...

Brain cancer “going APE”: here is its way to resist TMZ and leave DNA repair BEReft with options

In spite of intensive research, glioblastoma remains one of...

Newsletter

Don't miss

Malattia di Crohn e metabolismo batterico: le vie delle zolfo suggeriscono sintomi e interventi di ordine alimentare

Anche nei casi di malattia infiammatoria intestinale quiescente (cioĆØ...

Exhaustion TEXture: metabolism and epigenetic meet on the core for CART-driven opportunities

PersistentĀ antigenĀ stimulation, as observed in cancer and chronic infections, leads...

Brain cancer “going APE”: here is its way to resist TMZ and leave DNA repair BEReft with options

In spite of intensive research, glioblastoma remains one of...

Kampferolo per la riprogrammazione cellulare nelle allergie: ma con un meccanismo d’azione alternativo

Malattie allergiche come asma, dermatite atopica e allergie alimentari...
Dott. Gianfrancesco Cormaci
Dott. Gianfrancesco Cormaci
Laurea in Medicina e Chirurgia nel 1998; specialista in Biochimica Clinica dal 2002; dottorato in Neurobiologia nel 2006; Ex-ricercatore, ha trascorso 5 anni negli USA (2004-2008) alle dipendenze dell' NIH/NIDA e poi della Johns Hopkins University. Guardia medica presso la casa di Cura Sant'Agata a Catania. Medico penitenziario presso CC.SR. Cavadonna (SR) Si occupa di Medicina Preventiva personalizzata e intolleranze alimentari. Detentore di un brevetto per la fabbricazione di sfarinati gluten-free a partire da regolare farina di grano. Responsabile della sezione R&D della CoFood s.r.l. per la ricerca e sviluppo di nuovi prodotti alimentari, inclusi quelli a fini medici speciali.

Incretine GLP-1 per l’obesitĆ : ĆØ in arrivo una nuova tipologia che non causa nausea e fa bruciare le calorie

Milioni di persone in tutto il mondo traggono beneficio dai farmaci per la perdita di peso basati sull'ormone incretina GLP-1. Gli studi dimostrano anche...

Medicina complementare: la vitamina C puĆ² essere utile per trattare la depressione?

La depressione ha un peso sanitario enorme e, ancor di piĆ¹, sulla qualitĆ  della vita di chi ne ĆØ affetto ed eventualmente di chi...

Rischio renale post-infarto: l’omega-3 fa da buon “risolvente”

Un attacco cardiaco innesca una risposta infiammatoria acuta alla porzione danneggiata del ventricolo sinistro del cuore. Se questa infiammazione acuta permane, puĆ² portare allo...

Questo si chiuderĆ  in 20 secondi