domenica, Dicembre 22, 2024

Microbiota urinario: il regolatore della formazione dei calcoli renali e possibilmente di altre condizioni

I ricercatori della Cleveland Clinic hanno trovato la prova...

Serotonina “bilocata”: gli effetti degli antidepressivi partono dall’intestino ancora prima che dal cervello

Un nuovo studio sugli animali suggerisce che indirizzare i...

Gli effetti neurotossici del glifosato che sembrano simulare l’Alzheimer tramite la neuroinfiammazione

Il glifosato è l'erbicida piĂ¹ ampiamente utilizzato al mondo,...

“Spark the feed”: GLP-1 is not the only one to regulate energy, since the Arc reactor needs TRH and GABA to process

Obesity stands as one major global health issue, with limited effective and sustainable treatment options. Lately-introduced GLP-1 receptor agonists, which have been widely used as anti-obesity medications, have demonstrated potent appetite-suppressing effects, but their precise neural mechanisms are still incompletely elucidated. Existing research suggests the arcuate nucleus (Arc) of the hypothalamus is a critical center for appetite regulation, housing the AgRP neurons that strongly promote feeding behavior. GLP-1 receptors are expressed in various brain and peripheral regions, but evidence suggests that Arc-localized GLP-1 receptors play a pivotal and distinct role in mediating appetite suppression. Despite these findings, the specific neuronal subtypes and circuits involved in this phenomenon remain unclear, especially those inhibiting AgRP neurons. Advanced molecular tools, provide opportunities to map these complex interactions.

In addition, bridging this knowledge gap could advance obesity therapies by pinpointing more precise and effective neural targets while reducing adverse effects. A recent study published in the journal Nature Metabolism explored the neural mechanisms through which glucagon-like peptide 1 (GLP-1) receptor agonists, such as liraglutide, suppress appetite and promote weight loss. By integrating molecular mapping techniques, the researchers identified specific hypothalamic neural circuits and neurons that inhibit the hunger-driving Agouti-related peptide (AgRP) neurons, revealing critical pathways and additional therapeutic targets for appetite regulation and obesity management. In the specific, TRH+ Arc neurons regulate feeding through fast neurotransmitter-mediated inhibition, contrasting with delayed peptidergic signaling, highlighting their rapid impact on appetite suppression.

In the present study, a team of neuroscientists explored the neural circuits underlying GLP-1 receptor agonist-induced appetite suppression using a combination of molecular mapping transcriptomic-based) and functional neuroscience techniques (adeno-associated virus). Thyrotropin-releasing hormone positive (TRH+) Arc neurons were shown to reduce hyperphagia (excessive hunger) even in the absence of GLP-1 receptor agonists, suggesting their potential as standalone targets for obesity treatment. Additionally, the study identified transcriptionally distinct neuron subtypes, including neurons associated with the TRH in the Arc, which express GLP-1 receptors and have inhibitory effects on AgRP neurons. To confirm these interactions, the researchers performed channel rhodopsin-assisted circuit mapping in genetically modified mice to demonstrate functional synaptic inhibition by TRH+ Arc neurons.

These findings were further validated using RNA fluorescence in situ hybridization to identify key molecular markers of these neurons. This combined approach offered unprecedented precision in mapping neuron subtypes and their roles. By additionally employng optogenetics (where light is used to control the activity of cells such as neurons), to selectively activate TRHArc neurons and measure their effects on food intake in fasted and free-fed mice. They could pinpoint the calcium currents as the main mediator of the liraglutida activity on TRH+ Arc neurons. These neurons directly inhibit AgRP neurons in the Arc, a population known to drive feeding behavior. Using rabies-based tracing combined with single-cell transcriptomics, the team identified that TRHArc neurons are a critical afferent subtype of AgRP neurons. They are characterized by their expression of TRH and GLP-1 receptors.

Furthermore, the optogenetic activation of TRHArc neurons resulted in reduced food intake in fasted and fed mice, demonstrating their role in suppressing feeding. Synaptic mapping also confirmed that TRHArc neurons inhibit AgRP neurons through inputs related to the neurotransmitter gamma-aminobutyric acid (GABA). The investigation confirmed that TRH+ Arc neurons influence feeding primarily through fast neurotransmitter-mediated inhibition rather than delayed peptidergic signaling, where neurotransmitters are activated by neuropeptides. This distinction may refine therapeutic adjustments targeting hunger suppression. Moreover, TRHArc neuron activity was shown to suppress AgRP neuron-driven hyperphagia, or insatiable hunger, establishing a direct mechanistic link between these two neuron populations in regulating energy balance. Overall, these data provide valuable insights into the neural circuits underlying obesity therapies, paving more precise and potentially side-effect-minimized interventions.

  • Edited by Dr. Gianfrancesco Cormaci, PhD, specialist in Clinical Biochemistry.

Scientific references

Webster AN, Becker JJ et al. Nat Metab. 2024 Nov 31; 1-20.

Francois M, Kaiser L et al. Metabolism. 2024 Dec 11:156100.

Kim KS, Park JS et al. Science. 2024 Jul; 385(6707):438-446.

Lavoie O, Turmel A et al. Neuroendocrinol. 2024; 114(7):681.

Latest

Gli effetti neurotossici del glifosato che sembrano simulare l’Alzheimer tramite la neuroinfiammazione

Il glifosato è l'erbicida piĂ¹ ampiamente utilizzato al mondo,...

Systemic mastocytosis under siege: release the new weapon first, then “do the math” to estimate efficacy

Systemic mastocytosis (SIM) is characterized by an abnormal accumulation...

Newsletter

Don't miss

Gli effetti neurotossici del glifosato che sembrano simulare l’Alzheimer tramite la neuroinfiammazione

Il glifosato è l'erbicida piĂ¹ ampiamente utilizzato al mondo,...

Systemic mastocytosis under siege: release the new weapon first, then “do the math” to estimate efficacy

Systemic mastocytosis (SIM) is characterized by an abnormal accumulation...

Beta-bloccanti per ritardare la comparsa della malattia di Huntington: dati preliminari verso nuovi opzioni curative

Le ricerche emergenti hanno evidenziato il coinvolgimento della disfunzione...
Dott. Gianfrancesco Cormaci
Dott. Gianfrancesco Cormaci
Laurea in Medicina e Chirurgia nel 1998; specialista in Biochimica Clinica dal 2002; dottorato in Neurobiologia nel 2006; Ex-ricercatore, ha trascorso 5 anni negli USA (2004-2008) alle dipendenze dell' NIH/NIDA e poi della Johns Hopkins University. Guardia medica presso la casa di Cura Sant'Agata a Catania. Medico penitenziario presso CC.SR. Cavadonna (SR) Si occupa di Medicina Preventiva personalizzata e intolleranze alimentari. Detentore di un brevetto per la fabbricazione di sfarinati gluten-free a partire da regolare farina di grano. Responsabile della sezione R&D della CoFood s.r.l. per la ricerca e sviluppo di nuovi prodotti alimentari, inclusi quelli a fini medici speciali.

Anticorpi contro i grassi dannosi: la rivoluzione per combattere la cecitĂ  nella retinopatia diabetica

I pazienti con diabete affrontano una serie di potenziali problemi di salute mentre lavorano per gestire la malattia cronica. Tuttavia, una preoccupazione che sembra...

Nottambuli o mattinieri? Non cambia solo la fame, anche la salute

Il corpo umano scorre su un ciclo di 24 ore che è regolato dal nostro orologio interno, che è noto come ritmo circadiano o...

Cardo mariano: l’alleato del fegato diventa nemico dei tumori?

Il Cardo mariano (Silybum marianum) è una specie erbacea appartenente alla famiglia delle Asteraceae, che puĂ² raggiungere 1-2 metri di altezza ed è caratterizzata...

Questo si chiuderĂ  in 20 secondi