Il cancro del polmone è ora la principale causa di morte correlata al cancro, sia a livello mondiale che negli Stati Uniti. La malattia ha anche uno dei più bassi tassi di sopravvivenza – in parte perché i tumori del polmone sono resistenti al trattamento fin dall’inizio o sviluppano resistenza alla chemioterapia nel tempo. Una nuova ricerca suggerisce che una delle ragioni per cui le cellule tumorali possono sfuggire alla chemioterapia è dovuta alla loro capacità di adottare le caratteristiche delle cellule degli organi vicini. Inoltre, il nuovo studio trova una mutazione genetica e un meccanismo che guidano questo processo di cambiamento di forma. Il gruppo di ricerca è stato guidato dal dott. Rao Tata, un assistente professore di Biologia Cellulare presso la Duke University School of Medicine di Durham, e pubblicato sulla rivista Developmental Cell. Il Prof. Tata e il suo team hanno analizzato i dati genetici da un ampio database genetico, che ha ammassato migliaia di campioni da 33 diversi tipi di cancro e profilato il loro genoma. I ricercatori si sono concentrati sul cosiddetto cancro del polmone non a piccole cellule (NSCLC), che rappresenta l’80-85% dei tumori al polmone.
Analizzando i genomi dei tumori del cancro del polmone, gli scienziati hanno scoperto che un gran numero di loro mancava di NKX2-1. Questo è un gene omeotico (regolatore embrionale) noto per “dire” alle cellule di svilupparsi specificamente in una cellula polmonare. Invece, il team ha scoperto che queste cellule avevano tratti genetici normalmente legati agli organi gastrointestinali – come il pancreas, il duodeno e l’intestino tenue, e persino all’esofago e al fegato. Sulla base di queste osservazioni preliminari, gli scienziati hanno ipotizzato che l’abbattimento del gene NKX2-1 avrebbe fatto perdere le cellule tumorali polmonari la loro identità, adottando quella degli organi vicini. Quindi, i ricercatori hanno testato questa ipotesi in due diversi modelli di topo. Nel primo, hanno impoverito il tessuto polmonare dei topi del gene NKX2-1. Così facendo il tessuto polmonare ha cambiato aspetto e, sorprendentemente, il suo comportamento. Una sua analisi microscopica ha rivelato che aveva iniziato ad assomigliare alla mucosa dello stomaco nella sua struttura, oltre a produrre enzimi digestivi. Successivamente, il Prof. Tata e il team si sono chiesti cosa sarebbe successo se avessero attivato due oncogeni: SOX2 e K-Ras.
L’innesco del primo portava a tumori che sembravano di tipo addominale, mentre l’attivazione del secondo causava tumori che sembravano essere a metà strada fra il maturo e l’embrionale. Questi risultati dimostrano che gli elementi di plasticità del tumore rispecchiano la normale storia evolutiva degli organi, in quanto le cellule tumorali acquisiscono destini cellulari associati a organi vicini legati allo sviluppo. Il professor Tata spiega come il cancro del polmone potrebbe sviluppare resistenza alla chemioterapia. “Le cellule tumorali faranno tutto il necessario per sopravvivere. Dopo il trattamento con la chemioterapia, le cellule polmonari silenziano alcuni dei regolatori delle cellule chiave e acquisiscono le caratteristiche di altre cellule al fine di ottenere resistenza. Ad esempio, non tutti i tessuti adulti normali sono sensibili ai farmaci della chemio nella stessa misura. Alcuni sono più sensibili di altri, il che spiega il motivo per cui certi farmaci esercitano effetti tossici su alcuni tessuti, ma non su altri. I biologi del cancro sospettavano da tempo che le cellule tumorali potessero cambiare forma per sfuggire alla chemioterapia, e acquisire resistenza, ma non conoscevano i meccanismi alla base di tale plasticità”.
Adesso che si sanno, il cancro ha un segreto in meno con cui dare battaglia.
- a cura del Dr. Gianfrancesco Cormaci, PhD, specialista in Biochimica Clinica.
Pubblicazioni scientifiche
Tata PR et al. Dev Cell. 2018 Mar 26;44(6):679-693.
Zhang W et al. Transl Lung Cancer Res. 2018 Feb;7(1):32-49.
Moya CM et al. J Clin Endocrinol Metab. 2018 Mar 1;103(3):839.
Moisés J et al. BMC Pulm Med. 2017 Dec 13;17(1):197.
Griesing S e tal. Cancer Sci. 2017 Jul;108(7):1394-1404.