Le persone che vivono con l’Alzheimer potrebbero presto beneficiare di nuovi farmaci che possono impedire alla malattia di diffondersi in tutto il cervello. Una proteina del cervello chiamata tau è nota per svolgere un ruolo chiave nello sviluppo della malattia di Alzheimer. Le nostre cellule cerebrali hanno un sistema di trasporto fatto di “strade” diritte e parallele (microtubuli), lungo le quali possono viaggiare molecole di cibo, sostanze nutritive e di ricambio. In un cervello sano, la proteina Tau aiuta queste “strade” a rimanere dritte, ma nell’Alzheimer, la proteina si accumula a livelli anormali, formando strutture nocive chiamate neuro-grovigli. Inizialmente, questi grovigli si formano nelle aree del cervello chiave per la formazione della memoria, ma mentre la malattia progredisce, i grovigli continuano a diffondersi nel resto del cervello. Tuttavia, i ricercatori dell’Università della California a Los Angeles (UCLA) potrebbero ora aver trovato un modo per fermare la diffusione di questi dannosi grovigli.
Il loro nuovo studio – pubblicato sulla rivista Biochemical and Biophysical Research Communications – mostra come una piccola molecola chiamata cambinolo impedisce ai grovigli tau di migrare da una cellula all’altra. Il caporicerca dello studio, Dr. John Varghese, professore associato di Neurologia presso l’UCLA, commenta il significato dei risultati, dicendo: “Oltre 200 molecole sono state testate come terapia modificante la malattia di Alzheimer negli studi clinici, e nessuno ha ancora raggiunto il Santo Graal”. In un cervello sano, la proteina tau assicura che le tracce rimangano dritte legandosi ai microtubuli, che formano lo scheletro delle cellule. Ma nell’Alzheimer, la tau si stacca dallo scheletro, creando invece i cosiddetti grovigli neurofibrillari, che provocano la morte delle cellule cerebrali. La situazione si aggrava quando queste cellule cerebrali continuano a racchiudere aggregati di tau, in piccole sacche che migrano e “mettono radici” nel tessuto sano circostante.
Queste piccole tasche lipidiche, o vescicole, sono chiamate exosomi. Assicurano la continua diffusione dei grovigli tau. Ma cosa accadrebbe se ci fosse un modo per bloccare la formazione stessa di queste vescicole per la proteina tau tossica? Analizzando il comportamento della proteina tau in vitro (in colture cellulari) e in vivo (utilizzando modelli murini), i ricercatori hanno scoperto che il cambinolo ha la capacità di fare proprio questo: esso dirotta il trasferimento di tau bloccando un enzima chiamato nSMase2, che è la chiave per produrre gli exosomi che trasportano tau. In un esperimento, gli scienziati hanno usato cellule trasportanti tau ottenute post-mortem dal cervello di umani che avevano avuto l’Alzheimer. Hanno mescolato queste cellule con cellule prive di tau. Gli aggregati tau continuavano a diffondersi nelle cellule che non erano state trattate con cambinolo. Ma in quelli che hanno ricevuto il trattamento, le nuove cellule sane non sono state “contaminate” con tau.
I ricercatori ritengono che questi risultati speranzosi siano dovuti al cambinolo che inibisce l’attività dell’enzima nSMase2 e che questo meccanismo potrebbe fornire un’ottima base per lo sviluppo futuro del farmaco. Infatti, in un secondo esperimento in vivo, i ricercatori hanno visto che l’attività dell’enzima era ridotta nel cervello di topi trattati con cambinolo. Questo è stato particolarmente promettente. “Ottenere molecole che entrano nel cervello è un grosso ostacolo, perché la maggior parte dei farmaci non penetra la barriera emato-encefalica“, spiega il dott. Varghese. “Ora sappiamo che possiamo trattare gli animali con il cambinolo per determinare il suo effetto sulla patologia e sulla progressione del morbo di Alzheimer”. Secondo le conoscenze degli autori, questo è stato il primo studio ad aver dimostrato che il cambinolo sopprime l’attività dell’enzima nSMase2. I risultati avvicinano a nuovi trattamenti per il morbo di Alzheimer, così come per altre malattie neurologiche caratterizzate da aggregati tau.
Se questo è il caso, il prossimo passo sarà testare i nuovi farmaci in trials clinici sull’uomo.
- a cura del Dr. Gianfrancesco Cormaci, PhD, specialista in Biochimica Clinica.
Pubblicazioni scientifiche
Bilousova T et al. Biochem Biophys Res Commun. 2018 May 23; 499(4):751.
Dykes SS, Friday E e tal. Biochem Biophys Rep. 2015 Jul 26; 3:83-93.
Figuera-Losada M, Stathis M et al. PLoS One. 2015 May 26;10(5):e0124481.
Farooqui AA, Horrocks LA, Farooqui T. J Neurosci Res. 2007; 85(9):1834-50.